Comparing Sensor Fusion Techniques for Ball Position Estimation
نویسندگان
چکیده
In robotic soccer a good ball position estimate is essential for successful play. Given the uncertainties in the perception of each individual robot, merging the local perceptions of the robots into a global ball estimate often results in a more reliable estimate and helps to increase team performance. Robots can use the global ball position even if they themselves do not see the ball or they can use it to adjust their own perception faults. In this paper we report on our results of comparing state-of-the-art sensor fusion techniques like Kalman filters or the Monte Carlo approach in RoboCup’s Middle-size league. We compare our results to previously published work from other Middle-size league teams and show how the quality of perceiving the ball position is increased.
منابع مشابه
Multi-Focus Image Fusion in DCT Domain using Variance and Energy of Laplacian and Correlation Coefficient for Visual Sensor Networks
The purpose of multi-focus image fusion is gathering the essential information and the focused parts from the input multi-focus images into a single image. These multi-focus images are captured with different depths of focus of cameras. A lot of multi-focus image fusion techniques have been introduced using considering the focus measurement in the spatial domain. However, the multi-focus image ...
متن کاملSensor and Information Fusion Applied to a Robotic Soccer Team
This paper is focused on the sensor and information fusion techniques used by a robotic soccer team. Due to the fact that the sensor information is affected by noise, and taking into account the multi-agent environment, these techniques can significantly improve the accuracy of the robot world model. One of the most important elements of the world model is the robot self-localisation. Here, the...
متن کاملDistributed Sensor Fusion for Object Position Estimation by Multi-Robot Systems
We present a method for representing, communicating and fusing distributed, noisy and uncertain observations of an object by multiple robots. The approach relies on re-parameterization of the canonical twodimensional Gaussian distribution that corresponds more naturally to the observation space of a robot. The approach enables two or more observers to achieve greater effective sensor coverage o...
متن کاملA New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion
This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...
متن کاملRandom weighting estimation for fusion of multi-dimensional position data
Abstract This paper adopts the concept of random weighting estimation to multi-sensor data fusion. It presents a new random weighting estimation methodology for optimal fusion of multi-dimensional position data. A multi-sensor observation model is constructed for multi-dimensional position. Based on this observation model, a random weighting estimation algorithm is developed to estimate positio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005